Device re-identification in LoRaWAN through messages linkage

March 2022

Samuel Pélissier, Mathieu Cunche, Vincent Roca, Didier Donsez

INSA - CITI, Inria - Privatics, LIG

Growing numbers

- 10 billion of IoT devices
- 225 million of LoRaWAN devices

Countless applications

- Smart home
- Medical and healthcare
- Transportation
- Agriculture
- Energy management
- ...

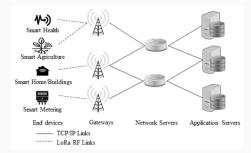
Evergreen privacy concerns

- Identity
- Location
- Activity

A temperature sensor (Comfort by Adeunis)

Assessing privacy protections: linking identifiers using network traces

- Tracking users positions using BLE/WiFi [1, 2, 3]
- Fingerprinting devices using the PHY layer [4]
- Inferring activity through metadata [5]

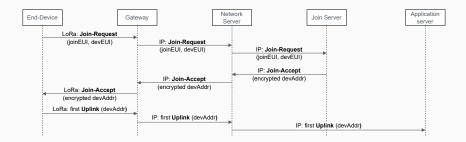

In LoRaWAN

- Linking identifiers: information about the end-device / its application
- Map it to an already known identity, activity, or location
- Passive collection:
 - Cheap for an attacker (100/300\$)
 - Easy

Background (1) LoRaWAN

LPWAN (Low-Power Wide-Area Network)

- Long range
- Low bit rate
- Low energy consumption
- Low cost

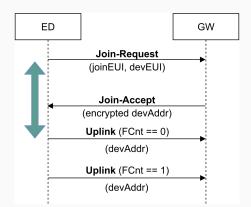


A typical LoRaWAN network architecture (Sundaram et al., 2019)

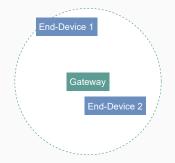
Background (2) identifiers and activation

Two relevant identifiers

- DevEUI: unique for the lifetime of the end-device (MAC address)
 - Only exposed in the Join Request
- DevAddr: randomly generated for each session (pseudonym)
 - Only exposed in the Uplink messages


A passive observer has no way to link back the two identifiers

- End-device left unmodified
- Encrypted payload
- The attacker is **passive**:
 - Does not inject or alter messages
 - Eavesdrops only the physical link (ED <-> GW)
 - Controls several gateways


Note: the long range of transmission increases the attack surface but does not change the threat model.

Finding the corresponding following message in a set of uplinks:

	Туре	Identifier	Feature
time	Join Request	DevEUI 1	
	Uplink	DevAddr A	Frame Counter: 42
	Uplink	DevAddr B	Frame Counter: 0

Linking join requests and uplink messages (2)

Example of a physical architecture for two end-devices and one gateway

Using distances to compare uplink messages:

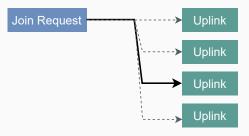
	Туре	Identifier	Feature
time	Join Request	DevEUI 1	RSSI: -42
	Uplink	DevAddr A	RSSI: -100
	Uplink	DevAddr B	RSSI: -44

Radio

- Estimated Signal Power euclidean distance
- Received Signal Strength Indication euclidean distance
- Signal to Noise Ratio euclidean distance
- Euclidean distance based on gateways receiving the messages

LoRa

- Datarate
- Spreading Factor


LoRaWAN

- Frame Counter
- Payload length
- OUI extracted from the DevEUI

Application

- Time of arrival difference between Join-Request and the studied Uplink
- Timestamps euclidean distance
- Time of arrival difference between two Uplink messages with identical DevAddr

Using machine learning for binary classification:

Classifiers

- Decision Tree (DT)
- Naive Bayes (NB)
- Logistic regression (LR)
- K-Nearest Neighbours (kNN)
- Random Forest (RF)
- AdaBoost (AB)
- LightBGM (LBGM)

Classifier	TPR	FPR
RF	0.7939	0.0010
DT	0.8074	0.0012
AB	0.7973	0.0014
LGBM	0.8074	0.0016
kNN	0.6318	0.0015
NB	0.9595	0.2418

Classifier	TPR	FPR
RF	0.4493	0.0007
DT	0.5912	0.0028
AB	0.4865	0.0017
LGBM	0.6453	0.0010
kNN	0.5777	0.0020
NB	0.1115	0.0193

With the frame counter

Without the frame counter

- Multiple classifiers provide good performances using the frame counter.
 - 0.8 TPR and 0.001 FPR for the Random Forest classifier.
- Removing the Frame Counter reduces performance.
 - This can be a counter measure.

TPR: True Positive Rate; FPR: False Positive Rate

Obfuscating the frame counter

Hiding the frame counter reduces the attack's performances.

- Encrypting a part of the header containing the frame counter.
- Using a random offset, eg: exchanging the first value of the frame counter during the join procedure.
- Not backward compatible.

Introducing randomness

- Radio-based features (randomly changing the emission power: may loose some messages);
- Time-based features (random delay after receiving the Join Accept);
- Payload length (padding);
- Multiple first uplink messages (decoys [5]).
- Reduces performance.

Obfuscating device identifiers

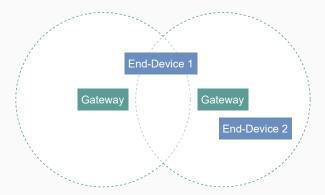
- Resolvable addresses (eg: BLE);
- Shared DevAddr for multiple end-devices (use NetworkSessionKey for identification).
- Not backward compatible.

- Reliably re-identifying end-devices is possible.
- The Frame Counter is greatly responsible for the attack's performance.
- Counter measures often require to change the LoRaWAN specification.

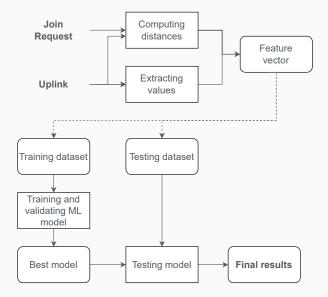
References:

[1] *Tracking Anonymized Bluetooth Devices*. Becker et al. https://doi.org/10.2478/popets-2019-0036

[2] Linking Bluetooth LE & Classic and Implications for Privacy-Preserving Bluetooth-Based Protocols. Ludant et al. https://doi.org/10.1109/SP40001.2021.00102


[3] Why MAC Address Randomization is Not Enough: An Analysis of Wi-Fi Network Discovery Mechanisms. Vanhoef et al. https://doi.org/10.1145/2897845.2897883

[4] Physical-Layer Fingerprinting of LoRa Devices Using Supervised and Zero-Shot Learning. Robyns et al. https://doi.org/10.1145/3098243.3098267


[5] I Send, Therefore I Leak: Information Leakage in Low-Power Wide Area Networks. Leu et al. https://doi.org/10.1145/3212480.3212508

[6] Discovery Privacy Threats via Device De-Anonymization in LoRaWAN. Spadaccino et al. https://doi.org/10.1109/MedComNet52149.2021.9501247

Multiple gateways architecture

Machine learning process

